關鍵詞: 消化系統(tǒng)腫瘤/治療;自殺基因;基因療法
Subject headings digestive system neoplasms/therapy; suicide gene; gene therapy 在惡性腫瘤的各種基因治療中,自殺基因(suicide gene)/前藥(prodrug)系統(tǒng)備受關注. 目前已在多種腫瘤進行大量臨床前研究,有的已進入Ⅰ/Ⅱ期臨床試驗. 該療法對消化系腫瘤的治療作用,業(yè)已得到證明[1]. 不管哪一種自殺基因/前藥系統(tǒng),均需有下列3個成分:①能編碼一種酶的自殺基因:該基因通常來源于病毒或真核細胞,其編碼的酶能將無毒的前藥轉變?yōu)榛钚远疚,引起靶細胞死亡;在缺乏前藥的條件下,該種基因的表達對機體無害;該基因編碼的酶對基質(前藥)應具有高度催化效能(高Kcat)[2]. ②基因轉移載體(gene-transfer Vectors):為了轉移自殺基因至靶細胞,一般采用基因工程改造的逆轉錄病毒(retroviruses)、腺病毒(adenoviruses)和腺病毒相關性病毒(adenovirus-associated viruses)作為載體[3]. 也有人采用陽離子脂質體作為載體,發(fā)現(xiàn)其對內皮細胞有高度親和力[4]. 基因轉移的關鍵是其靶向性(targeting)[5]. 如將甲胎蛋白(AFP)啟動子和清蛋白增強子(Alb)TRS連接自殺基因,則后者便僅于表達AFP的肝癌細胞中表達,而不影響正常肝細胞[6]. ③能被自殺基因編碼的酶作用的前藥(prodrug):這種前藥在自殺基因不存在時,對機體無毒或僅有微小毒性,而在自殺基因編碼的酶特異性作用下,前藥轉化為活性藥物,后者的細胞毒性較無活性的前藥至少強100倍. 1 自殺基因/前藥系統(tǒng) 1.1 單純皰疹病毒1型胸腺嘧啶激酶/戊環(huán)鳥苷(HSV-tk/GCV)系統(tǒng) 表達單純皰疹病毒1型胸腺嘧啶激酶(herpes simplex virus-1 thymidine kinase, HSV-tk)的小鼠成纖維細胞,對戊環(huán)鳥苷(ganciclovir, GCV)的敏感性較野生型細胞強1000倍,在BALB/c小鼠,給予GCV,可使表達HSV-tk的肉瘤和Abelson白血病病毒性淋巴瘤完全退縮. 上述發(fā)現(xiàn)奠定了HSV-tk/GCV系統(tǒng)的基礎. GCV本身無毒性,在HSV-tk作用下,變成GCV單磷酸鹽(GCV-MP),再經內源性細胞激酶作用,迅速轉化為其二磷酸-(GCV-DP)和三磷酸鹽(GCV-TP),后者對增殖中的哺乳細胞具有高度毒性. 雖然哺乳動物細胞胸腺嘧啶激酶也能催化GCV的轉化,但HSV-tk的作用比其強200倍. GCV-TP具有羥基,能插入DNA鏈中,引起堿基配對錯誤、DNA斷裂、姐姝染色單體交換和致死性基因失穩(wěn)定[7];GCV-TP尚能抑制DNA聚合酶,進一步阻止DNA合成[8]. 在暴露于GCV后,表達HSV-tk的哺乳動物細胞內迅速聚集GCV磷酸鹽,而未表達HSV-tk的野生型細胞則無GCV磷酸鹽測得;將HSV-tk轉染的細胞與3H標記的GCV一起孵育,發(fā)現(xiàn)放射性標記物迅速而穩(wěn)定地摻入細胞DNA內. 應用IH核磁共振分光鏡檢測,發(fā)現(xiàn)腫瘤組織在HSV-tk/GCV治療后,含膽堿物質的顯性彌散系數(shù)減少50%,而迅速彌散性水成分的顯性彌散系數(shù)增加219%,細胞內粘滯度明顯增加,而大分子物質的流體動力學面積可能減少[9];動力學分析顯示細胞內P53蛋白水平先增加,繼之cyclin β1蛋白水平升高,細胞周期中止于S/G2[10]. 上述事實說明HSV tk/GCV引起腫瘤細胞凋亡. HSV-tk/GCV系統(tǒng)不僅能殺滅表達HSV tk的細胞,且具有顯著的旁觀者效應(bystander effect, BSE). 無論是體外抑或體內實驗均觀察到,GCV劑量越大,培養(yǎng)中的HSV-tk+細胞被殺滅的比例和腫瘤退縮率也越高,荷HSV-tk+瘤的動物生存期也越長. 至于HSV-tk本身的表達水平,一般與對GCV的敏感性不具有相關性,但不完全如此. 此外,細胞對HSV-tk/GCV的敏感性尚取決于擔負著GCV二-和三磷酸化的細胞激酶的活性、細胞增殖速率以及將GCV-TP整合入DNA的DNA聚合酶活性[11]. 有人認為,GCV被HSV-tk+細胞攝取較慢,親和力較差,不是很理想的HSV-tk基質[12]. Balzarini et al[13]發(fā)現(xiàn),Elaidic acid ester GCV(E-GCV)的代謝物在HSV-tk+細胞內停留時間較GCV代謝物長1倍以上,且E-GCV在血漿中較GCV穩(wěn)定,因此如用作HSV-tk系統(tǒng)的前藥,其作用至少比GCV強10倍;Tong et al[14]發(fā)現(xiàn),如果用無環(huán)鳥苷(acyclovir, ACV)代替GCV作為前藥,并使用較GCV常用劑量高2.5~5.0倍的劑量,則引致的旁觀者效應明顯高于應用GCV作為前藥時. 1.2 帶狀皰疹病毒胸腺嘧啶激酶/阿糖甲氧基嘌呤(VZV-tk/Ara-M)系統(tǒng) 與HSV-tk不同,帶狀皰疹病毒胸腺嘧啶激酶(varicella zoster virus thymidine kinase, VZV-tk)對GCV親和性甚弱,而對前藥阿糖甲氧基嘌呤(6-methoxypurine arabinside, Ara-M)和溴乙烯基脫氧尿嘧啶(E)-5(2-bromovinyl)-2'-deoxyuridine ,BVdU)具有親和力,能選擇性催化二者磷酸化,再在細胞內酶作用下,最后生成三磷酸鹽,分別為Ara-ATP和BVdU-TP[15]. 野生型細胞對高達1500μmol/L濃度的Ara-A和75μmol/L~250μmol/L濃度的BVdU均不敏感,而對表達VZV-tk的細胞,低至1μmol/L~100μmol/L濃度的Ara-M和0.06μmol/L~0.6μmol/L的BVdU即呈細胞毒性[16]. 1.3 胞嘧啶脫氨酶/5氟胞嘧啶(CD/5FC)系統(tǒng) 胞嘧啶脫氨酶(cytosine deaminase, CD)系由大腸桿菌和某些霉菌表達的一種酶,不存在于哺乳動物細胞內,能催化胞嘧啶生成尿嘧啶. 抗霉菌藥5氟胞嘧啶(5-fluorocytosine, 5FC)經CD脫氨后,生成5氟尿嘧啶(5-fluorouracil, 5FU),再經細菌內酶作用,生成氟脲嘧啶三磷酸鹽(5-fluoro-5'-trip hosphate)和氟脫氧尿嘧啶單磷酸鹽(5-fluoro-2'-deoxyuridine-5'-monophosphate, FdUMP). 后二者抑制胸苷酸合成酶(thynidylate synthase),阻抑DNA,RNA和蛋白合成,引致細胞死亡. 一般選用大腸桿菌的CD基因作為自殺基因. 應用5FC作為前藥,有不少優(yōu)點,例如,人的細胞酶不能使5FC脫氨,因此在通常劑量下5FC幾無毒性;口服吸收良好(>80%);能透過血腦屏障等[1]. 表達CD的哺乳動物的細胞在暴露于5FC后. 細胞內迅速產生可測定水平的5FC,胸苷酸合成酶受抑,廣泛形成RNA皺縮物(RNA adduts). 由CD/5FC介導的細胞死亡發(fā)生較HSV-tk/GCV引起者為慢[17],可能由于5FC被攝取和轉化較慢所致. 但CD/5FC引起的細胞殺死作用不一定弱于HSV-tk/GCV,主要由于前者往往有更強的旁觀者作用. 如同HSV-tk/GCV一樣,前藥5FC的細胞毒性作用也呈現(xiàn)劑量相關性,在某些敏感的細胞系如結腸癌,細胞毒性與CD表達呈正相關[18],但在對5FU不敏感的肉瘤細胞,此種相關性不明顯,看來,細胞毒作用的強弱可能最終取決于特殊細胞系對5FU的內在敏感性. CD/5-FC系統(tǒng)也顯示旁觀者效應,與HSV/GCV時相似,但機制不同[19]. 1.4 細胞色素P450微粒體酶CYP2B1/環(huán)磷酰胺(CYP2B1/CPA)系統(tǒng) 自大鼠肝分離出的細胞色素P450微粒體酶CYP2B1,能催化化療藥環(huán)磷酰胺(CPA)和異環(huán)磷酰胺(IFF),生成4羥環(huán)磷酰胺(4HC),再迅速轉化為短壽命的烷基化物磷酰胺氮芥(phosphoramide mustard),引致細胞DNA損傷. 在體內,轉染CYP2B1基因的細胞對CPA的敏感性較野生型細胞高15倍~20倍. 該系統(tǒng)具有中等強度的旁觀者效應. 該系統(tǒng)對累及某些特殊部位如腦、腦膜的腫瘤可能具有特殊作用. CPA能自由地透過血腦屏障,但CPA轉化為4HC主要發(fā)生于肝內,而4HC不易透過血腦屏障. 如將CYP2B1基因轉導入腦瘤內,再給予CPA,則局部生成的4HC可對腦瘤發(fā)揮細胞毒作用. 在進行自身骨髓移植的腫瘤患者,可利用CYP2B1/CPA清除骨髓內瘤細胞. 4HC對正常造血細胞和腫瘤細胞均有毒性,如將表達CYP2B1的腺病毒載體轉染骨髓,由于造血細胞缺乏腺病毒表面受體,因此僅有腫瘤細胞被CYP2B1基因有效地轉染,從而被毒性4HC殺滅,而正常造血細胞不受危害[1]. 1.5 細胞色素P450 CYP4B1/氨基蒽(CYP4B1/2AA)系統(tǒng) 免細胞色素P450 CYP4B1能選擇性作用于前藥氨基蒽(2-aminoanthracene, ZAA)或4-ipomeanol (4-IM),使之轉化為活性物質烷化劑不飽和性或乙醛呋喃環(huán)氧化物(aldehyde furan epoxide[20]). 此種活化藥物在很低濃度即顯示高度DNA毒性. 體外實驗表明,只要有1%的細胞表達CYB4B1,即有顯著的旁觀者效應. 1.6 脫氧胞苷激酶/阿糖胞苷(dCK/Ara-C)系統(tǒng) 臨床上發(fā)現(xiàn),抗白血病的核苷酸類藥物如阿糖胞苷(Ara-C)、2-氯脫氧腺苷(2CdA)和fludarabine的效應與白血病細胞表達脫氧胞苷激酶(deoxycytidine kinase, dCK)的水平相關. 這些前藥在細胞內活化的關鍵步驟是被dCK磷酸化. Ara-C雖為造血系統(tǒng)惡性腫瘤的有效藥物,但對實體腫瘤作用有限. 人dCK能將Ara-C在細胞內磷酸化,使其細胞毒性增加. 有人用逆轉錄病毒或腺病毒,將dCK基因轉染至神經膠質瘤細胞,使這些瘤細胞對Ara-C敏感性明顯提高[21]. 1.7 烏苷-黃嘌呤磷酸核糖基轉移酶/6-硫黃嘌呤(gpt/6TX)系統(tǒng) 大腸桿菌的烏苷-黃嘌呤磷酸核糖基轉移酶(guanosine-xanthine phosphoribosyl transferase, gpt)基因表達產物,既能增強被轉染細胞對硫黃嘌呤的敏感性,也能增強對mycophenolic acid、黃嘌呤和次嘌黃嘌呤的抗性,從而可對被轉染細胞進行正、負選擇. gpt能使6-硫黃嘌呤(6-thioxanthine, 6TX)和6-硫鳥嘌呤(6-thioguanine, 6-TG)磷酸化,增加轉染gpt基因細胞對該兩種前藥的敏感性. 鼠神經膠質瘤細胞被逆轉錄病毒轉染gpt基因后,對6-TX的敏感性提高50倍~100倍.[22]. 給予無胸腺鼠顱內C6腫瘤內移植gpt-逆轉錄病毒載體產生細胞,隨后給予6TX,引起腫瘤縮小80%,生存期較對照組明顯延長[23]. 1.8 硝基還原酶/CB1954(NTR/CB1954)系統(tǒng) 大腸桿菌的硝基還原酶(nitroreductase, NTR)對基質5-(aziridin-1-yl)-2, 4-dinitrobenzamide (CB1954)具有高度催化活性,能迅速將其還原為一系列羥胺類烷化劑. 表達NTR的細胞對CB1954的敏感性較野生型細胞高500倍,且具有強大旁觀者效應[24,25]. NTR也能激活一些抗菌藥如硝基呋喃妥英(nitrofuratoin)和甲硝唑,使之具有細胞毒性,但不顯示旁觀者效應[25]. 1.9 嘌呤核苷磷酸化酶/6-甲基嘌呤脫氧核苷(PNP/6-MeP-dR)系統(tǒng) 大腸桿菌嘌呤核苷磷酸化酶(purine nucleoside phosphorylase, PNP)基因編碼的酶能激活相對無毒性的6-甲基嘌呤脫氧核苷(6-methyl purine-deoxyriboside, 6-MeP-dR),生成高毒性的6-甲基嘌呤(6-methylpurine, 6-MeP). 用逆轉錄病毒載體將PNP基因轉達給小鼠黑素瘤和乳癌細胞,再暴露于6-MeP-dR,發(fā)現(xiàn)黑素瘤細胞被選擇性殺滅. 該系統(tǒng)具有強大旁觀者效應,只要有1%的細胞表達PNP,即可引起大多數(shù)非轉染細胞死亡. 1.10 胸腺嘧啶磷酸化酶/5'-脫氧-5-氟尿嘧啶(TP/5'-DFUR)系統(tǒng) 胸腺嘧啶磷酸化酶(thymidine phosphorylase, TP)能催化胸腺嘧啶或脫氧尿嘧啶,生成1-磷酸脫氧核糖. 對于前藥5'-脫氧-5氟尿嘧啶(5'-deoxy-5-fluorouridine, 5'-DFUR)或1-(tetrahydrofuryl-5-fluorouracil, Tegafur), TP使之轉化為5FU. 業(yè)已證明該系統(tǒng)可使人MCF-7乳癌細胞對5'-DFUR的敏感性提高1000倍. 該系統(tǒng)也呈旁觀者效應. 1.11 羧基肽酶G2/CMDA系統(tǒng)(CPG2/CMDA) 假單胞菌屬(Pseudomonas)RS16產生的羧基肽酶G2(carboxy peptidase G2,CPG2)可使4-([2-chloroethyl][2-mesyloxyethyl]amino)benzyol-L-glutamic acid(CMDA)分解為苯甲酸衍生物,后者為強毒性烷化劑. CMDA不易進入細胞,不能被細胞內表達的CPG2活化,但如果應用基因工程方法讓CPG2在細胞膜表面表達,則CMDA便易被激活,從而顯示細胞毒性[26]. 1.12 羧酸酯酶/CPT-11(CE/CPT-11)系統(tǒng) 兔羧酸酯酶(carboxylesterase, CE)能使化療藥CPT-11(irinotecan, 7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxycamptothecin)轉化為其活性形式SN38(7-ethyl-10 hydroxycamptothecin)[27]. 人橫紋肌肉瘤細胞被免CE基因轉染后,對CPT-11的敏感性較之野生型細胞高8倍以上. 從CPT-11轉化為SN38的過程具有同工酶特異性,在人,主要由肝內CE-Ⅰ催化. 1.13 復合系統(tǒng) 聯(lián)合應用不同的自殺基因前藥系統(tǒng)可能比單一系統(tǒng)更有效[28,29]. 例如,聯(lián)合應用CD/5FC和HSV-tk/GCV系統(tǒng),前者產生的5FU可抑制胸苷酸合成酶,減少胸腺嘧啶生成,相應減少在HSV-tk活性部位胸腺嘧啶和GCV的競爭,從面增強HSV-tk/GCV系統(tǒng)的效應. 給鼠9L神經膠質瘤同時轉染CD和HSV-tk兩種基因,可使殺滅腫瘤所需的5FC和GCV最低濃度下降50%以上. 2 作用機制 基因轉移載體將自殺基因轉染給腫瘤細胞,在自殺基因表達的特殊酶作用下,本身無毒或微毒的前藥在局部被激活,轉化為高度毒性藥物,從而將瘤細胞毒殺滅. 表達這種酶的瘤細胞越多,被殺滅的細胞越多. 此為直接細胞毒效應. 但實踐中發(fā)現(xiàn),為了取得腫瘤退縮,并不需要每個腫瘤細胞均表達自殺基因,換言之,在自殺基因/前藥系統(tǒng)介導的腫瘤治療中,被殺滅的細胞數(shù)遠超過表達自殺基因的細胞數(shù). 這是由于在前藥存在下,基因改造的瘤細胞能引起未經基因改造細胞的細胞毒性和死亡. 這種現(xiàn)象即前已述及的旁觀者效應(bystander effect, BSE). 此種效應有力的增強了自殺基因/前藥系統(tǒng)的作用,但因細胞系和酶/前藥不同而差異很大,可以不存在,也可以很強大,以致腫瘤內只要有1%~5%的轉染細胞即可引起幾乎全部瘤細胞死亡. 前述的各系統(tǒng)中,許多均顯示這種效應. BSE產生的機制尚不完全清楚,主要有: 2.1 單純彌散作用 某些激活的前藥(如5FU)為可溶性分子,可自由地在細胞-細胞之間彌散,從而引發(fā)BSE. 在CD/5FU系統(tǒng),暴露于5FU后,CD+細胞培養(yǎng)液中很快可測出5FU. 在細胞水平,BSE取決于5FC被基因改造細胞轉化為5FU的速率、5FU彌散至鄰近未基因改造細胞的速率,以及靶細胞對5FU的內在敏感性. 如果腫瘤細胞本身對5FU敏感,則從鄰近基因改造細胞彌散而來的5FU,即使?jié)舛群艿停渤尸F(xiàn)細胞毒作用. 2.2 代謝協(xié)作作用(metabolic cooperation) 在某些自殺基因系統(tǒng),例如HSV-tk/GCV,活化的前藥GCV-TP為荷電分子,不能被動地穿越細胞膜,但在HSV-tk+細胞和野生型細胞共培養(yǎng)中,卻在后一種細胞內顯示有高濃度GCV-TP[30]. 現(xiàn)認為,這是HSV tk+細胞內GCV-TP經過細胞的裂隙連接(gap junction)轉移給野生型細胞的結果. 裂隙連接系由結合蛋白(connexons)組成的特殊細胞膜結構. 結合蛋白由connexins裝配而成,為一六聚體圓柱形蛋白,中心有孔道. 不同細胞之間的裂隙連接形成“代謝協(xié)作”管道,經過此管道,一些小電荷分子能在細胞間流動. GCV-TP分子甚小(<1000),能透過裂隙連接. 業(yè)已證實,在HSV-tk/GCV系統(tǒng)中,細胞-細胞接觸是細胞殺滅作用所必需;細胞間裂隙連接與BSE強弱密切相關,而裂隙連接的透過性又與connexins 43,37,32和26的表達水平有關. 缺乏BSE的細胞系在轉入connexins 43基因后,顯示BSE. 胰癌細胞呈現(xiàn)的BSE強于某些胃腸癌細胞,前者的connexins 43和connexins 26 mRNA表達水平,比后者分別高8倍~26倍和2倍~229倍[31]. 為了強化BSE,可通過藥理學方法疏通裂隙連接或增強其表達. 由HSV-tk+和野生型腫瘤細胞混合物構建的鼠間質細胞瘤,如果同時接受GCV和維生素A酸(retinoid acid),其腫瘤消退作用加快,這種作用即使在HSV-tk+細胞與野生型細胞的比例低至1∶40時仍存在. 已知維生素A酸能增加connexins 43的表達,促進小分子色素在細胞之間轉移,而其本身對腫瘤大小并無影響,由此推測,維生素A酸之所以能強化HSV-tk/GCV的作用,系由于其能加強裂隙連接的透過性,強化BSE所致[32]. 其他能增強HSV-tk/GCV BSE殺傷作用的物質尚有黃酮類apigenin、膽固醇合成抑制劑lovastatin. 已知細胞酪氨酸激酶能使connexins磷酸化,減弱裂隙連接的透過性,而lovastatin能抑制該酶活性,從而增強裂隙連接的通透性:apigenin可能會增加裂隙連接的表達. 相反,cAMP活化劑forskolin和鈣通道阻滯劑硝苯吡啶能減弱BSE. 2.3 免疫介導作用 給動物在兩個不同部位分別移植HSV-tk+腫瘤和野生型腫瘤,再給予GCV,發(fā)現(xiàn)野生型腫瘤也退縮,這種現(xiàn)象稱為“距離性旁觀者效應”(“bystander effect at a distance”),提示體內出現(xiàn)抗腫瘤性免疫反應[33]. 下列事實提示這種免疫反應的存在:①給小鼠植入含有HSV-tk+和野生型細胞的腫瘤,再接受亞致死量照射,發(fā)現(xiàn)BSE減弱;②在免疫缺陷性荷瘤BALB/c小鼠,HSV-tk/GCV的BSE弱于免疫功能正常的荷瘤鼠;③接受HSV-tk/GCV治療的荷瘤動物,對同源腫瘤的再接種呈現(xiàn)特異性抗體反應[34];④前列腺癌鼠模型接受HSV-tk/GCV治療期間,如果去除自然殺傷細胞(NK),則原發(fā)腫瘤的抑制作用減少20%,肺轉移癌的生長不能被抑制[35];⑤HSV-tk/GCV介導的腫瘤壞死伴有明顯炎細胞浸潤,CD4+和CD+8T細胞集聚、瘤內白介素-12(IL-12)水平增高,這與環(huán)磷酰胺引起的壞死不同,后者缺乏炎癥反應[34]. 自殺基因/前藥促發(fā)的免疫反應的原理尚不清楚,可能由于腫瘤細胞壞死后,抗原成分更多地暴露,或在對壞死細胞的炎癥反應中,抗原提呈細胞得到補充或激活,從而引發(fā)延遲型腫瘤免疫反應,如同體內產生活的抗腫瘤疫苗. 有人認為CD基因表達的CD蛋白本身具有超級免疫原性,可刺激淋巴細胞產生交叉免疫反應. 進一步研究表明,免疫反應的出現(xiàn)與細胞因子的表達有關. HSV-tk+細胞暴露于GCV后,體內α腫瘤壞死因子(TNF-α)、白介素-1α(IL-1α)、IL-6、γ干擾素(IFN-γ)和粒細胞菌落刺激因子(GM-CSF)水平均提高;HSV-tk+細胞表面共刺激性分子(costimulating molecules)ICAM和B7的表達增加. 有人發(fā)現(xiàn),如果免疫缺陷性HSV-tk載體同時表達TNF-α,則HSV-tk/GCV抗腫瘤效應明顯提高. 2.4 其他作用 有人認為,死亡的HSV-tk+細胞可釋放含GCV-TP凋亡囊泡,野生型腫瘤細胞吞噬這些囊泡后會死亡. 但這些囊泡出現(xiàn)較遲,不能解釋早期發(fā)生的BSE. 有人認為HSV-tk/GCV可引起血管內皮細胞基因改造,通過對腫瘤血管的破壞而引發(fā)BSE[36]. 已知轉染HSV-tk基因的大鼠腦瘤,在暴露于GCV后,瘤內血管明顯減少. 3 消化系腫瘤的治療 迄今,已在許多腫瘤試驗了自殺基因療法的治療作用,這些腫瘤包括黑素瘤、神經膠質瘤、間皮瘤、肺癌、乳腺癌、頭頸部鱗狀細胞癌、卵巢癌、前列腺癌、腹膜癌、宮頸癌等,但多半為體內、外臨床前研究,真正進入臨床Ⅰ/Ⅱ期研究的僅見于惡性胸膜間皮瘤(美國)、成膠質細胞瘤和轉移性黑素瘤(法國)等少數(shù)腫瘤. 在消化系腫瘤中,研究較多的是關于HSV-tk/GCV和CD/5FC對肝癌、結腸癌、胰癌和胃癌的治療作用. 3.1 肝癌 1993年Caruso et al[37]首先報告向大鼠實驗性轉移性肝癌組織內,注入含有表達HSV-tk重組逆轉錄病毒的包裝細胞,再給予GCV,引起腫瘤明顯退縮,瘤細胞數(shù)平均減至對照組的1/60. 應用重組腺病毒作為HSK-tk基因的載體,也得出類似結果. Kwong et al[38]給鼠肝植入乳腺癌細胞,制造實驗性肝癌,2wk后,瘤內注入表達HSV-tk的復制缺陷性腺病毒載體,結果顯示腫瘤明顯退縮,生存期明顯長于對照組(P<0.01). HSV-tk/GCV可能特別適于治療肝腫瘤,這是因為:①迅速分裂的腫瘤細胞生長于非增生性、相對正常的肝組織中,而用于基因轉移的逆轉錄病毒載體對增殖旺盛的細胞最有親和力. 體外實驗表明,HSV-tk基因轉染的肝腫瘤細胞對GCV的敏感性是野生型細胞的500倍~1000倍[39];②由于70%的肝細胞癌表達甲胎蛋白(AFP),而正常肝細胞不表達此種蛋白,因此如應用AFP基因作為啟動子,可提高基因轉錄載體的靶向性,增加目的基因轉染肝癌細胞的效果[6,39-41];③,由于肝腫瘤的血液供應主要來自肝動脈,因此如果從肝動脈輸注基因轉移載體和前藥,可能進一步增加基因轉移的靶向性,減少副作用[39]. Gerolami et al[42]在二乙基硝胺肝癌鼠模型,比較了經門脈、肝動脈和瘤內直接注射等3種途徑輸注重組腺病毒載體的效果,發(fā)現(xiàn)以肝動脈輸注產生的腫瘤抑制效應最顯著. HSV-tk/GCV對肝腫瘤的抑制作用尚見于肝外輸注自殺基因時,此很可能系“距離性旁觀者效應”發(fā)揮了作用. 向鼠腹腔內注入HSV-tk+和HSV-tk-結腸癌細胞,10d后,再向肝內注入HSV-tk-結腸癌細胞,所有動物均接受GCV. 結果顯示,不僅腹腔內HSV-tk+腫瘤和HSV-tk-腫瘤相比,明顯退縮,而且肝內HSV-tk-腫瘤在腹腔HSV-tk+腫瘤鼠也小于腹腔HSV-tk-腫瘤鼠. 腹腔HSV-tk+腫瘤鼠的肝內腫瘤內有大量單核細胞浸潤,伴纖維化,僅偶見存活的腫瘤細胞. 3.2 結直腸癌 CD/5FC系統(tǒng)看來更適合于治療結直腸癌. 體外實驗表明培養(yǎng)的結腸癌細胞中只要1/3表達胞嘧啶脫氨酶(CD),即足以使前藥5FC轉化為足夠濃度的5FC,而使全部癌細胞的生長受到抑制;皮下移植的結腸癌組織中只要2%的癌細胞表達CD,在給予5FC后,腫瘤生長即完全停止. 如果將載有CD基因的腺病毒載體,直接注射入裸鼠皮下移植性結腸腫瘤內,再給予5FC,引起腫瘤縮小3/4~4/5. Rowley et al[17]報告表達CD的結直腸癌細胞對5FC的敏感性,比不表達CD的腺癌細胞高200倍以上,在7d內,90%以上癌細胞被殺死. 有人比較了經基因改造的結直腸癌細胞對前藥5FC或GCV的敏感性,發(fā)現(xiàn)GCV對HSV-tk+細胞的50%抑制濃度(IC50)為對野生型細胞的1/140,而5FC對CD+細胞的IC50僅為對野生型細胞的1/960;移植瘤內如果HSV-tk+細胞少于10%,則不顯示抗腫瘤效應,而CD+細胞僅需4%,實驗動物腫瘤生長便受到抑制. 結直腸癌對CD/5FC更為敏感的原因可能為:①腫瘤本身對5FC具有內在敏感性;②CD/5FC系統(tǒng)的旁觀者效應(BSE)較顯著. 在此系統(tǒng)中,BSE不取決于細胞-細胞間接觸,而取決于5FC的細胞間自由彌散. 現(xiàn)認為結直腸癌對HSV-tk/GCV的敏感性與癌細胞的類型有關. Link et al[43]發(fā)現(xiàn)在由HSV-tk+和HSV-tk-結直腸癌細胞構建的種植瘤,如果HSV-tk+細胞在全部癌細胞中占9%,在給予GCV后,發(fā)生腫瘤退縮;但某些類型HSV-tk+結直腸癌細胞對GCV呈現(xiàn)抗性,進一步研究發(fā)現(xiàn)這些細胞內HSV/tk基因部分或完全性脫落,免疫組化研究顯示細胞內HSV/tk蛋白缺乏[44]. McMaster et al[45]發(fā)現(xiàn)三種結腸癌細胞株中有二種在HSV-tk/GCV作用期間無明顯BSE發(fā)生. 分子雜交技術雖然在這些細胞測到裂隙連接蛋白connexin43,但免疫組化研究顯示,這種蛋白存在于細胞漿內,而不是在細胞表面;相反,呈現(xiàn)強有力BSE的結直腸癌細胞表面有connexin43表達. 由于細胞表面connexin43表達是HSV-tk/GCV治療時BSE發(fā)生的必要條件,因此某些類型結直腸癌細胞對HSV-tk/GCV缺乏敏感性[31],可能主要與BSE不足有關,這對基因治療方法和適合病例的選擇具有實際意義. 3.3 胰癌 1994年DiMaio et al用重組逆轉錄病毒載體,將HSV-tk基因轉染胰癌細胞. 給免疫缺陷鼠皮下注射以各種比例混合的HSV-tk+和野生型胰癌細胞,全部動物均發(fā)生胰癌. 給予GCV后,腫瘤明顯消退,即使僅含10% HSV-tk+細胞的腫瘤也顯示瘤體積明顯縮小. 應用CEA基因作為啟動子,可提高病毒載體將目的基因轉入產CEA性胰癌細胞的耙向性. Ohashi et al[46]發(fā)現(xiàn),用表達HSV-tk基因的腺病毒載體轉染胰癌細胞時,如采用一般的啟動子,則癌細胞對GCV的敏感性與CEA產生無關,如果采用CEA啟動子,則GCV殺傷作用在產CEA細胞明顯增強. 在胰癌的自殺基因/前藥治療中,BSE甚為顯著. Green et al[24]應用硝基還原酶ND/CB1954系統(tǒng),發(fā)現(xiàn)胰癌細胞轉染ND基因后,對CB1954的敏感性提高500倍,在與野生型細胞混合培養(yǎng)中,只要10%的胰癌細胞表達ND,即足以引起強大BSE. 對于腹腔轉移性胰癌,腹腔內輸注表達自殺基因的病毒載體,往往可有效地誘發(fā)BSE. Rosenfeld et al[47]給BALB/c裸鼠腹腔內注入胰癌細胞誘發(fā)腫瘤形成,再注入表達HSV-tk基因的腺病毒載體,在注射GCV后,腫瘤明顯退縮,伴有強大BSE出現(xiàn). Aoki et al[48]作過類似實驗, 但采用脂質體作為載體,將HSV-tk基因注入腹腔,對照組24只鼠全部出現(xiàn)胰腫瘤伴腹腔播散,而治療組14只鼠中8只未見腫瘤生長. 3.4 胃癌 Yoshida et al[49]將包裝有HSV-tk基因的逆轉錄病毒轉染胃癌細胞,發(fā)現(xiàn)這種細胞對GCV呈現(xiàn)劑量和時間依賴性反應,在體外實驗中低至0.1μg/mL的GCV即可將胃癌細胞殺滅;在13只皮下接種HSV-tk+胃癌細胞的裸鼠中,12只的腫瘤在給予GCV后顯著退縮. 與結直腸癌相似,胃癌對HSV-tk/GCV的敏感性也以產CEA細胞最高. Tanaka et al[50]應用含CEA啟動子的重組逆轉錄病毒轉染HSV-tk基因,發(fā)現(xiàn)腹腔注射這種重組逆轉錄病毒后,30%產CEA性胃癌細胞選擇性表達HSV-tk基因,給予GCV后,腫瘤生長較未給予GCV的對照組減少20%. 類似地,如果以CEA基因作為啟動子,腺病毒載體也可將CD基因選擇性轉染于CEA陽性胃癌細胞. 有人認為,腹腔內注射以CEA基因作為啟動子的腺病毒介導的CD/5FU,可能是治療播散性胃癌的新途徑. 4 問題和前景 4.1 安全性 由于本身無毒性的前藥,僅在表達自殺基因的瘤細胞內才被轉化為活性物質,引起后者局部高濃度,因此,在理論上,本療法不會引起全身性副作用. 動物實驗證明這種療法是安全的. 臨床Ⅰ/Ⅱ期試驗同樣顯示本療法不會引起嚴重的副作用. Klatzmann et al用鼠細胞包裝表達HSV-tk基因的逆轉錄病毒,然后將這種鼠細胞注入黑素瘤瘤體內,每次108~3×109細胞,共1次~3次,然后給予GCV 5mg/kg,2次/d,共14d. 共治療8例患者. 治療后3d~9d于注射局部發(fā)生炎癥反應,多數(shù)持續(xù)幾天后消失;伴中等度發(fā)熱,持續(xù)24h后自退. 無其他嚴重副反應. Klatzmann et al[51]在1998年又報告治療12例復發(fā)性膠質細胞瘤的結果. 在手術切除腫瘤后,于腔壁多部位注入含有HSV-tk+逆轉錄病毒的鼠Mll細胞8.7×106/cm2,7d后再輸注GCV 5mg/kg,2次/d共14d. 未見明顯副作用,無一例因此項治療而引發(fā)癥狀加劇或死亡. Sterman et al[52]報告胸腔內注射含HSV-tk基因的腺病毒載體,每次1012pfu,共治療12例胸膜間皮瘤患者. 多數(shù)患者在6h~12h內輕度發(fā)熱,48h~72h后消退,1例出現(xiàn)急性胸膜炎癥狀. 無明顯血液學異常. 胸腔插管周圍常發(fā)生皮疹,但不治而愈. 病毒載體可否在體內重新獲得復制能力,而引發(fā)播散性病毒感染自殺基因能否轉染非靶細胞,而引起各臟器損害目前的資料均持否定的看法. Klatzmann et al[51]曾在治療的1例患者中測到HSV-tk基因,但為一過性,未引起不良后果. 值得注意的是自殺基因療法治療肝癌,對肝功能有無影響尚有不同看法. Qian et al[53]發(fā)現(xiàn)在二乙基硝胺(DENA)誘發(fā)的鼠肝癌,HSV-tk/GCV治療后,在腫瘤退縮的同時,血清轉氨酶明顯升高,肝組織呈彌漫性損害. 但這可能由于DENA誘發(fā)的細胞增生,不僅見于肝癌結節(jié),也發(fā)生于非癌性肝實質,以致非腫瘤性細胞也被HSV-tk基因轉染,而對GCV呈現(xiàn)敏感性. van de Eb et al[54]報告正常的非有絲分裂肝細胞能被表達HSV-tk的腺病毒載體轉染,以致在HSV-tk/GCV 治療后可發(fā)生嚴重肝功能異常. 但其他學者則認為該療法對肝無明顯副作用,肝癌組織內發(fā)生的旁觀者效應不會波及腫瘤外肝組織. 4.2 展望 自殺基因/前藥療法可使前藥在表達自殺基因的腫瘤內,轉為高效毒性物質,通過直接細胞毒性或旁觀者效應發(fā)揮抗腫瘤作用. 如果基因靶向表達能夠實現(xiàn),則不僅正常組織免受損傷,而且可清除無法手術切除的癌灶或轉移灶. 但迄今為止,該療法主要尚處于臨床前試驗階段,僅有少數(shù)進入臨床Ⅰ/Ⅱ期試驗,療效也難稱滿意. 提高療效的關鍵看來是真正做到靶向表達. 雖然某些腫瘤特異性啟動子驅動的自殺基因可轉染特殊瘤細胞內,但這種特異性是相對的,也可轉染正常細胞;而且,病毒載體在腫瘤組織內不可能均勻分布,更不可能轉染每個腫瘤細胞. 為了提高靶向性,有人主張采用復制型而不采用免疫缺陷性病毒載體,認為前者可在腫瘤內形成次級循環(huán)感染(secondary round of infection)[1],提高轉染效果;也有人主張采用不同的病毒載體,以轉染不同類型的腫瘤組織或同一類型腫瘤的不同細胞. 由于病毒載體引入機體后,可誘發(fā)抗病毒抗體,而影響病毒載體的轉染效果,因此采用不同的病毒載體尚有可能進行反復治療. 努力提高旁觀者效應(BSE),對增強自殺基因/前藥療效有重要意義. 自殺基因/前藥系統(tǒng)不同,BSE的機制也可不同,例如HSV-tk/GCV系統(tǒng)的BSE有賴于細胞裂隙連接的表達,而某些腫瘤不表達或甚少表達裂隙連接,顯然不適于HSV-tk/GCV療法,因此,篩選適合某一療法的腫瘤甚為重要;也可應用藥物促進裂隙連接的表達. 前藥的選擇也很重要,應發(fā)展新的半壽期長的高效前藥,并探討最適劑量和給藥方式. 此外,聯(lián)合應用不同的自殺基因/前藥系統(tǒng),將自殺基因和細胞因子基因聯(lián)合轉染入腫瘤,或聯(lián)合應用常規(guī)抗癌療法或免疫促進因子,以形成疊加殺傷效應,等,均是目前正在研究的課題. 相信在不遠的將來,自殺基因療法一定會有新的突破.
5參考文獻 1 Morris JC, Touraine R, Wildner O, Blaese RM. Suicide genes: gene therapy applications using enzyme/prodrug strategies. in: the development of human gene therapy. Cold Spring Harbor Laboratory Press. 1999:477-526 2 Connors TA. The choice of prodrugs for gene directed enzyme prodrug therapy of cancer. Gene Ther, 1995;2:702-709 3 Wilson JM. Vectors-shuttle vehicles gor gene therapy. Clin Exp Immunol, 1997;1:31-32 4 Fife K, Bower M, Cooper RG, Stewart L, Etheridge CJ, Coombel RC, Buluwela L. Endothelial cell transfection with cationic liposomes and herpes simplex-thymidine kinase mediated killing. Gene Ther, 1998;5:614-620 5 Dachs GU, Dougherty GJ, Stratford IJ, Chaplin DJ. Targeting gene therapy to cancer: a review. Oncol Res, 1997;9:313-325 6 Su H, Lu R, Chang JC, Kan YW. Tissue-specific expression of herpes simplex virus thymidine kinase gene delivered by adeno-associated virus inhibits the growth of human hepatocellular carcinoma in athymic mice. Proc Natl Acad Sci USA, 1997;94:13891-13896 7 Haynes P, Lambert TR, Mitchell ID. Comparative in vivo genotoxicity of antiviral nucleoside analogues; penciclovir, acyclovir, ganciclovir and xanthine analogue, caffeine, in the mouse bone marrow micronucleus assay. Mutat Res, 1996;369:65-74 8 Thurst R, Schacke M, Wutzler P. Cytogenic genetoxicity of the antiherpes virostatics in Chinese hamster V79-E cells. I. Purine nucleoside analogues. Antivi Res, 1996;31:105-113 9 Hakumaki JM, Poptani H, Paumalainen AM, Loimas S, Paljarvi LA, Yla-Herttuala S, Kauppinen RA. Quantilative 1H nuclear magnetic resonance diffusion spectroscopy of BT 4C rat glioma during thymidine kinase-mediated gene therapy in vivo: identification of apoptotic response. Cancer Res, 1998;58:3791-3799 10 Wei SJ, Chao Y, Hung YM, Lin WC, Yang DM, Shih YL, Chang LY. S-and G2 phase cell cycle arrests and apoptosis induced by ganciclovir in murine melanoma cells tranduced with herpes simplex virus thymidine kinase. Exp Cell Res, 1998;241:66-75 11 Boucher PD, Ruch RJ, Shewach DS. Differential ganciclovir-mediated cytotoxicity and bystander killing in human colon carcinoma cell lines expressing herpes simplex thymidine kinase. Hum Gene Ther, 1998;9:801-814 12 Haberkorn U, Khazaie K, Morr I, Altmann A, Muller M, VanKaick G. Ganciclovir uptake in human mammary carcinoma cells expressing herpes simplex virus thymidine kinase. Nucl Med Biol, 1998;25:367-373 13 Balzarini J, Degreve B, Andrei G, Neyts J, Sandvold M, Myhren F, de Clercq E. Superior cytostatic activity of the ganciclovir elaidic acid ester due to the prolonged introcellular retention of ganciclovior anabolites in herpes simplex virus type 1 thymidine kinase gene transfected liver cells. Gene Ther, 1998;5:419-426 14 Tong XW, Engehausen DG, Kaufman RH, Agoulnik I, Contant C, Freund CT, Oehler MK. Improvement of gene therapy for ovarian cancer by using acyclovir instead of ganciclovir in adenovirus mediated thymidine kinase gene therapy. Anticancer Res, 1998;18(2A):713-718 15 Grignet-Debrus C, Calberg-Bacq CM. Potential of vericella zoster virus thymidine kinase as a suicide gene in breast cancer cells. Gene Ther, 1997;4:560-569 16 Degreve B, Andrei G, Izquierdo M, Piette J, Morin K, Knaus EE, Wiebe LI. Vericella-zoster virus thymidine kinase gene and antiherpetic pyrimidine nucleoside analogues in a combined gene/chemotherapy treatment for cancer. Gene Ther, 1997;4:1107-1114 17 Rowley S, Lindauer M, Gebert JF, Haberkorn U, Oberdorfer F, Moebius U, Herfarth C. Cytosine deaminase gene as a potential tool for the genetic therapy of colorectal cancer. J Surg Oncol, 1996;61:42-48 18 Hoganson DK, Batra RK, Olsen JC, Boucher RC. Comparison of the effects of three different toxin genes and their levels of expression on cell growth and bystander effect in lung adenocarcinoma. Cancer Res, 1996;56:1315-1323 19 Dong Y, Wen P, Manome Y, Parr M, Hirshowitz A, Chen L, Hirschowitz EA. In vivo replication-deficient adenovirus vector-mediated transduction of the cytosine deaminase gene sensitizes glioma cells to 5-fluorocytosine. Hum Gene Ther, 1996;7:713-720 20 Rainov NG, Dobberstein K-U, Sena-Esteves M, Herrlinger U, Kramm CM, Philpot RM, Hilton J. New prodrug activation gene therapy for cancer using cytochrome P450 4B1 and 2-aminoanthracene/4-ipomeanol. Hum Gene Ther, 1998;9:1261-1273 21 Manome Y, Wen PY, Dong Y, Tanaka T, Mitchell BS, Kufe DW, Fine HA. Viral vector transduction of the human deoxycytidine kinase cDNA sensitizes glioma cells to the cytotoxic effects of cytosine arabinoside in vitro and in vivo. Nat Med, 1996;2:567-573 22 Tamiya T, Ono Y, Wei MX, Mroz PJ, Moolten FL, Chiocca EA. Escherichia coli gpt gene sensitizes rat glioma cells to killing by 6-thioxanthine or 6-thioguanine. Cancer Gene Ther, 1996;3:155-162 23 Ono Y, Ikeda K, Wei MX. Regression of experimental brain tumors with 6 -thioxanthine and Escherichia coli gpt gene therapy. Hum Gene Ther, 1997;8:2043-2055 24 Green NK, Young DJ, Neoptolemos JP, Friedlos F, Knox RJ, Springer CJ, Anlezark GM. Sensitization of colorectal and pancreatic cancer cell lines to the prodrug 5-(aziridin-1-yl)-2, 4-dinitrobenzamide(CB1954) by retroviral transduction and expression of the E. coli nitroreductase gene. Cancer Gene Ther, 1997;4:229-238 25 Bridgewater JA, Knox RJ, Pitts JD, Collins MK, Springer CJ. The bystander effect of the nitroreductase/CB1954 enzyme/prodrug system is due to a cellpermeable metabolite. Hum Gene Ther, 1997;8:709-717 26 Marais R, Spooner RA, Stribbling SM, Light Y, Martin J, Springer CJ. A cell surface tethered enzyme improves efficiency in gene-directed enzyme prodrug therapy. Nat Biotechnol, 1997;15:1373-1377 27 Danks MK, Morton CL, Pawlik CA, Potter PM. Overexpression of a rabbit liver carboxylesterase sensitizes human tumor cells to CPT-11. Cancer Res, 1998;58:20-22 28 Aghi M, Kramm CM, Chou TC, Breakefield XO, Chiocca EA. Synergistic anticancer effects of ganciclovir/thymidine kinase and 5-fluorocytosine/cytosine deaminase gene therapies. J Natl Cancer Inst, 1998;90:370-380 29 Uckert W, Kammertons T, Haack K, Qin Z, Gebert J, Schendel DJ, Blankenstein T. Double suicide gene(cytosine deaminase and herpes simplex virus thymidine kinase) but not single gene transfer allows reliable elimination of tumors cell in vivo. Hum Gene Ther, 1998;9:855-866 30 Ishii-Morita H, Agbaria R, Mullen CA, Hirano H, Koeplin DA, Ram Z, Oldfield EH. Mechanism of “bystander effect" killing in the herpes simplex thymidine kinase gene therapy model of cancer treatment. Gene Ther, 1997;4:244-255 31 Yang L, Chiang Y, Lenz HJ, Danenberg KD, Spears CP, Gordon EM, Anderson WF. Intercellular communication mediates the bystander effect during herpes simplex thymidine kinase/ganciclovir based gene therapy of human gastrointestinal tumor cells. Hum Gene Ther, 1998;9:719-728 32 Park JY, Elshami AA, Amin K, Rizk N, Kaiser LR, Alberda SM. Retinoids augment the bystander effect in vitro and in vivo in herpes simplex virus thymidine kinase/ganciclovir-mediated gene therapy. Gene Ther, 1997;4:909-917 33 Kianmanesh AR, Perrin H, Panis Y, Fabre M, Nagy HJ, Houssin D, Klatzmann D. A“distant" bystander effect of suicide gene therapy: regression of nontransduced tumors together with a distant transduced tumor. Hum Gene Ther, 1997;8:1807-1814 34 Mullen CA, Anderson L, Woods K, Mishino M, Petropoulos D. Ganciclovir chemoablation of herpes thymidine kinase suicide gene-medified tumors produces tumors necrosis and induces systemic immune responses. Hum Gene Ther, 1998;9:2019-2030 35 Hall SJ, Sanford MA, Atkinson G, Chen SH. Induction of potent antitumor natural killer cell activity by herpes simplex virus-thymidine kinase and ganciclovir therapy in an orthotopic mouse model of prostate cancer. Cancer Res, 1998;58:3221-3225 36 Morinchi S, Oligino T, Krisky D, Marconi P, Fink D, Cohen J, Glorioso JC. Enhanced tumor cell killing in the presence of ganciclovir by herpes simplex virus type 1 vector-directed coexpression of human tumor necrosis factor-alpha and herpes simplex virus thymidine kinase. Cancer Res, 1998;58:5731-5737 37 Caruso M, Panis Y, Singh G, Houssin D, Salzmann JL, Klatzmann D. Regression of an established macroscopic liver tumor by in vivo retroviral-mediated transfer of a suicide gene. Proc Natl Acad Sci, 1993;90:7024-7028 38 Kwong YL, Chen SH, Kosai K, Finegold MJ, Woo SI. Adenoviral_mediated suicide gene therapy for hepatic metastases of breast. Cancer, 1996;3:339-344 39 Nagy H, Panis Y, Fabre M, Perrin H, Klatzmann D, Houssiin D. Are hepatoma a good target for suicide gene therapy An experimental study in rat using retroviral-mediated transfer of thymidine kinase gene. Surgery, 1998;123:19-24 40 Ueki T, Nakata K, Mawatari F, Tsuruta S, Ido A, Ishikawa H, Nakao K. Retrovirus-mediated gene therapy for human hepatocellular carcinoma tranplanted in athymic mice. Int J Mol Med, 1998;1:671-675 41 Mawatari F, Tsuruta S, Ido Ueki T, Nakao K, Kato Y, Tamaoki T. Retrovirus-mediated gene therapy for hepatocellular carcinoma: selective and enhanced suicide gene expression regulated by human alpha-fetoprotein enhancer directly linked to its promotor. Cancer Gene Res, 1998;5:301-306 42 Gerolami R, Cardoso J, Bralet MP, Cuenod CA, Clement O, Tran PL, Brechot C. Enhanced in vivo adenovirus-mediated gene transfer to rat hepatocarcinomas by selective administration into the hepatic artery. Gene Ther, 1998;5:896-904 43 Link CJ Jr, Levy JP, McCann LZ, Moorman DW. Gene therapy for colon cancer with the herpes simlex thymidine kinase gene. J Surg Oncol, 1997;64:289-294 44 Yang L, Hwang R, Chiang Y, Gordon EM, Anderson WF, Parekh D. Mechanism for ganciclovir resistance in gastrointestinal tumor cells transduced with a retroviral vector containing the herpes simplex virus thymidine kinase gene. Clin Cancer Res, 1998;4:731-741 45 McMaster RA, Saylors RL, Jones KE. Lack of bystander killing in herpes simplex virus thymidine kinase-transduced colon cell lines due to deficient connexin43 gap junction formation. Hum Gene Ther, 1998;9:2253-2261 46 Ohashi M, Kanai F, Tanaka T, Lan KH, Shiratori Y, Komatsu Y, Kawabe T. In vivo adenovirus-mediated prodrug gene therapy for carcinoembryonic antigen-prodrug pancreatic cancer. Jpn J Cancer Res, 1998;89:457-462 47 Rosenfeld ME, Vicker SM, Raben D, Wang M, Sampson L, Feng M, Jaffee E. Pancreatic carcinoma cell killing via adenoviral mediated delivery of the herpes simplex virus thymidine kinase gene. Ann Surg, 1997;225:609-618 48 Aoki K, Yoshida T, Matsumoto N, Ide H, Hosokawa K, Sugimura T, Terada M. Gene therapy for peritoneal dissemination of pancreatic cancer by liposome-mediated trandfer of herpes simplex virus thymidine kinase gene. Hum Gene Ther, 1997;8:1105-1113 49 Yoshida K, Kawami H, Yamaguchi Y, Kuniyasu H, Nishiyama M, Hirai T, Yanagihara K. Retrovirally transmitted gene therapy for gastric carcinoma using herpes simplex virus thymidine kinase gene. Cancer, 1995;75(6 Suppl):1467-1471 50 Tanaka T, Kanai F, Lan KH, Ohashi M, Shiratori Y, Yoshida Y, Hamada H. Adenovirus-mediated gene therapy of gastric carcinoma using cancer-specific gene expression in vivo. Biochem Biophys Res Commun, 1997;231:775-779 51 Klatzmann D, Valery CA, Bensimon G, Marro B, Boyer O, Mokhtari K, Diguet B. A phase Ⅰ/Ⅱ Study of herpes simplex virus type 1 thymidine kinase “suicide" gene therapy for recurrent glioblastoma. Hum Gene Ther, 1998;9:2595-2604 52 Sterman DH, Treat J, Litzky LA, Amin KM, Coonrod L, Molnar-Kimber K, Recio A. Adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir gene therapy in patients with localized malignancy: results of a phase Ⅰ clinical trial in malignant mesothelioma. Hum Gene Ther, 1998;9:1083-1092 53 Qian C, Idoate M, Bilbao R, Sangro B, Bruna O, Vazquez J, Prieto J. Gene transfer and therapy with adenoviral vector in rats with diethylnitrosamine-induced hepatocellular carcinoma. Hum Gene Ther, 1997;8:349-358 54 Van de Eb MM, Cramer SJ, Vergouwe Y, Schagen FH, van Krieken JH, van der Eb AJ, Rinkes IH. Severe hepatic dysfunction after adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene and ganciclovir administration. Gene Ther, 1998;5:451-458
... |