既往研究提示,高濃度葡萄糖是誘導糖尿病腎病纖維化的主要病理機制。高濃度的葡萄糖可誘導腎小管導管上皮細胞α-SMA表達[4-5],α-SMA為肌成纖維細胞的標志性蛋白,是反映上皮細胞轉分化主要觀察指標。目前發(fā)現(xiàn),高糖促轉分化的作用機制主要是通過上調各種細胞分化或基質增殖的蛋白水平,例如TGF-β1、PTHrP、Ⅰ型膠原及MMP-2等,TGF-β1、PTHrP信號通路在器官纖維化中的作用已經明確,其水平升高可以通過上調Smad系列蛋白表達,誘導細胞轉分化為纖維細胞。而Ⅰ型膠原及MMP-2是參與基質沉積及積聚的主要調控蛋白,同時以自分泌及旁分泌方式作用本體細胞或鄰近細胞,從而放大纖維化效應[4-7]。其他細胞包括血管內皮細胞、平滑肌細胞等不僅是單純性高糖,間歇性高糖同樣可以從多個水平影響細胞分化通路TGFβ1/Smad信號轉導,從而加重纖維化進程[2-3]。
本研究發(fā)現(xiàn),高濃度葡萄糖環(huán)境或間歇性高糖分別作用NRK-52EA細胞后,其TGF-β1、Ⅰ型膠原、MMP-2、α-SMA以及PTHrP表達水平均顯著上調;間歇性高糖TGF-β1、MMP2以及α-SMA表達較持續(xù)性高糖作用更為顯著,該結果與Polhill等[8]對腎小球系膜細胞研究結果—間歇性高糖可以促進腎小球系膜細胞纖維化相似,故推測間歇性高糖較持續(xù)性高糖可能更容易通過激活TGF-β1、MMP-2而誘導腎小管導管上皮細胞NRK-52EA轉分化為含α-SMA的間充質細胞,加重腎臟纖維化。
本研究結果還發(fā)現(xiàn),間歇性高糖能顯著上調NRK-52EA細胞株的ROS含量,其水平高于單純性高糖組。Quagliaro等[9]研究提示間歇性高糖能通過氧化應激作用促進ROS積聚,誘導各種炎癥因子包括MMP等表達,而該系列炎癥因子已經被證實參與誘導腎小管導管上皮轉分化為間充質細胞進程[10],Jones等[11]也發(fā)現(xiàn)間歇性高糖能顯著誘導人臍靜脈內皮細胞氧化應激反應標記物硝基酪氨酸含量升高,從而促進細胞凋亡。故認為間歇性高糖誘導NRK-52EA細胞轉分化作用比持續(xù)性高糖更顯著,其機制可能是間歇性高糖誘導細胞內氧化應激更嚴重,從而促進腎小管導管上皮細胞TGF-β1、MMP-2等系列蛋白的表達以拮抗炎癥反應,而TGF-β1、MMP-2蛋白表達上調,又進一步加重腎小管上皮細胞纖維化進程。
綜上所述,間歇性高糖對腎小管上皮細胞的損害應該更予重視。提示臨床控制血糖平穩(wěn)是糖尿病治療的重要基礎,在此基礎上適當抗氧化治療有望減輕氧化應激, 保護腎小管上皮細胞, 遲滯其轉分化, 可能會延緩糖尿病并發(fā)癥的發(fā)展醫(yī).學.全.在.線m.gydjdsj.org.cn。
【參考文獻】
1]Beltramo E,Berrone E,Tarallo S,et al.Different apoptotic responses of human and bovine pericytes to fluctuating glucose levels and protective role of thiamine[J].Diabetes Metab Res Rev,2009,25(6):566-576.
[2] Risso A,Mercuri F,Quagliaro L,et al.Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture[J].Am J Physiol Endocrinol Metab,2001,281(5):E924-930.
[3] Sanchez AP,Sharma K.Transcription factors in the pathogenesis of diabetic nephropathy[J].Expert Rev Mol Med,2009,11:e13.
[4] Lo CS,Chen CH,Hsieh TJ,et al.Local action of endogenous renal tubular atrial natriuretic peptide[J].J Cell Physiol,2009,219(3):776-786.
[5] Li H,Liu D,Zhao CQ,et al.High glucose promotes collagen synthesis by cultured cells from rat cervical posterior longitudinal ligament via transforming growth factor-beta1[J].Eur Spine J,2008,17(6):873-881.
[6] Hills CE,Al-Rasheed N,Al-Rasheed N,et al.C-peptide reverses TGF-beta1-induced changes in renal proximal tubular cells:implications for treatment of diabetic nephropathy[J].Am J Physiol Renal Physiol,2009,296(3):F614-621.
[7] Holian J,Qi W,Kelly DJ,et al.Role of Kruppel-like factor 6 in transforming growth factor-beta1-induced epithelial-mesenchymal transition of proximal tubule cells[J].Am J Physiol Renal Physiol,2008,295(5):1 388-1 396.
[8] Polhill TS,Saad S,Poronnik P,et al.Short-term peaks in glucose promote renal fibrogenesis independently of total glucose exposure[J].Am J Physiol Renal Physiol,2004,287(2):268-273.
[9] Quagliaro L,Piconi L,Assaloni R,et al.Intermittent high glucose enhances ICAM-1,VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production[J].Atherosclerosis,2005,183(2):259-267.
[10] Simonson MS.Phenotypic transitions and fibrosis in diabetic nephropathy[J].Kidney Int,2007,71(9):846-854.
[11] Jones SC,Saunders HJ,Qi W,et al.Intermittent high glucose enhances cell growth and collagen synthesis in cultured human tubuleinterstitial cell[J].Diabetologia,2004,42(9):1 113-1 119.